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ABSTRACT
We formally define a hyperlink classification problem in web

search by classifying hyperlinks into three classes based on their
roles: navigation, suggestion, and action. Real-world web graph
datasets are generated for this task. We approach the hyperlink clas-
sification problem from a structured graph embedding perspective,
and show that we can solve the problem by modifying the recently
proposed knowledge graph embedding techniques. The key idea of
our modification is to introduce a relation perturbation while the
original knowledge graph embedding models only corrupt entities
when generating negative triplets in training. To the best of our
knowledge, this is the first study to apply the knowledge graph
embedding idea to the hyperlink classification problem. We show
that our model significantly outperforms the original knowledge
graph embedding models in classifying hyperlinks on web graphs.
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1 INTRODUCTION
On a web graph, a node indicates a web page and a directed edge

indicates a hyperlink between the web pages. The hyperlinks are
created for different reasons, and thus, may play different roles in
the graph. For example, some hyperlinks are designed to navigate
the main website, e.g., ‘go home’ or ‘go back’ links (navigation
links). Some hyperlinks are made to invoke actions such as ‘edit’,
‘share’, or ‘send an email’ (action links). Some hyperlinks suggest
users to take a look at related and useful information (suggestion
links). As an example, on Stack Overflow, some people recommend
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a questioner to read a related page, e.g., ‘see this page’ by providing
the URL of the page. Since these three different types of hyperlinks1,
i.e., navigation, suggestion, and action, imply semantically different
roles, it is beneficial to classify the hyperlinks based on these roles.
For example, when we compute PageRank [6] or run the HITS
algorithm [9], it is preferred that the suggestion links are mainly
taken into account. On the other hand, the navigation links are
important when we want to trace a set of main pages of a website.
Once we correctly classify hyperlinks based on their purposes, we
can improve the performance of various web mining tasks.

One of the challenges of the hyperlink classification problem
is that the navigation links are prevalent while there are very few
suggestion and action links. On this imbalanced classification prob-
lem, a neighborhood-based approach such as [1] fails to correctly
predict the class labels by assigning all the hyperlinks to the nav-
igation class. To detect the navigation links, boilerplate detection
has been studied [10] and an entropy-based analysis has been also
considered [8]. However, these methods require rich information
about the web pages and involve complicated heuristics.

We propose applying a knowledge graph embedding idea to the
hyperlink classification problem. To the best of our knowledge, our
work is the first study to approach the hyperlink classification prob-
lem from a structured graph embedding perspective. We generate
three real-world web graph datasets by web crawling and assign-
ing class labels to the hyperlinks. By analyzing these real-world
graphs, we find that the three different types of hyperlinks are not
randomly organized but preserve a characterized structure, which
enables us to classify hyperlinks based on link analysis. We show
that the link structure can be effectively captured via knowledge
graph embedding techniques.

Knowledge graph embedding methods are different from general
graph embedding techniques in that the general graph embedding
methods, e.g., node2vec [7] and struc2vec [12], mainly consider
the connectivity structure of a graph and only focus on represent-
ing the nodes in a low-dimensional feature space while knowledge
graph embedding models aim to embed the relations as well as
the entities in a feature space. We modify the recently proposed
knowledge graph embedding methods, TransE [4], TransH [15],
and TransR [11] to appropriately adapt these methods to the hy-
perlink classification problem. The key idea of our modification is
to introduce a relation perturbation while the original knowledge
graph embedding models only corrupt entities when generating
negative triplets in training. This modification plays a critical role
in boosting the performance of the classification model, which re-
sults in significantly outperforming the original knowledge graph
embedding models in classifying hyperlinks on web graphs.

1One might insist that there should be more than three classes when we classify the
hyperlinks. Even though we focus on the three-class problem in this paper, we believe
that our study can be extended to the case where there are more than three classes.
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2 KNOWLEDGE GRAPH EMBEDDING
A knowledge graph has been recognized as a reasonable model

to encode human knowledge [3]. Given a set of known facts which
can be described by a set of triplets such as (a head entity h, re-
lation r , a tail entity t), we can create a directed graph where a
node indicates an entity and a directed edge indicates a relation
between the entities. Knowledge graph embedding techniques [5]
have recently gained considerable attention where the goal is to
represent the entities and relations in a feature space while preserv-
ing the structure of the graph [13]. Among the knowledge graph
embedding methods, TransE [4], TransH [15], and TransR [11] are
well-known methods [14]. The basic idea of these methods is to
find a feature vector h ∈ Rk of an entity h, t ∈ Rk of an entity t ,
and an embedding of r ∈ Rd of a relation r where k and d are the
dimensions of the corresponding feature spaces (k = d or k ̸= d
depending on the model). Given a set of known facts (i.e., golden
triplets) denoted by S and a set of corrupted triplets (or negative
triplets) S′, all the TransE, TransH, and TransR methods minimize
the following loss function:

L =
∑

(h,r ,t )∈S

∑
(h′,r ,t ′)∈S′

[f (h, r , t ) + γ − f (h′, r , t ′)]+ (1)

where [x]+ ≡max (0, x ) and γ is the margin. How to create the cor-
rupted triplets S′ is an important issue which is differently handled
depending on the model. Although the details about the corruption
process vary, all the TransE, TransH, and TransRmethods only cor-
rupt entities when generating the negative triplets. That is, given
(h, r , t ) ∈ S, a negative triplet is created by (h′, r , t ′).

In (1), the way how f (h, r , t ) is computed determines the three
different models. In TransE, f (h, r , t ) is defined to be

TransE: f (h, r , t ) = ∥h + r − t ∥22 . (2)

While TransE assumesh+r ≈ t , it has been noticed that the TransE
model fails to correctly represent reflexive or one-to-many/many-
to-one/many-to-many relations [15]. To overcome this problem,
TransH is proposed by defining f (h, r , t ) to be

TransH: f (h, r , t ) = ∥h⊥ + r − t⊥∥
2
2 (3)

where h⊥ and t⊥ represent projected entities on a relation-specific
hyperplanewr . Note that h⊥ = h −wr

Thwr and t⊥ = t −wr
T twr .

Instead of representing entities and relations in the same feature
space, TransR embeds entities and relations in distinct spaces by
introducing a projection matrixMr ∈ Rk×d which projects entities
to a relation space. Then, f (h, r , t ) is defined to be

TransR: f (h, r , t ) = ∥hr + r − tr ∥
2
2 (4)

where hr = hMr and tr = tMr .
The loss function defined in (1) is minimized using stochastic

gradient descent with a mini-batch mode while appropriate nor-
malizations are performed depending on the model.

3 HYPERLINK CLASSIFICATION MODEL
We create three real-world web graphs for the hyperlink classifi-

cation problem2, and propose a hyperlink classification model by
modifying a knowledge graph embedding method.
2The datasets and the detailed descriptions about the datasets are available on
http://bigdata.cs.skku.edu.

Table 1: Real-World Web Graphs. The numbers of naviga-
tion, suggestion, and action hyperlinks are shown.

|V| |E | navigation suggestion action

web_437 404 437 268 (61.33%) 112 (25.63%) 57 (13.04%)
web_1442 332 1,442 1,284 (89.04%) 93 (6.45%) 65 (4.51%)
web_10000 2,202 10,000 9,892 (98.92%) 85 (0.85%) 23 (0.23 %)

3.1 Real-World Web Graphs
We create three real-world web graphs by crawling a set of web

pages and the hyperlinks starting from a web page in Stack Over-
flow. From the seed, we randomly sample outgoing and incoming
hyperlinks of the page so that we expand the seed to its direct
neighbors. From the seed set, we conduct a biased random walk
to sample the graph around the seeds. Table 1 shows the three
datasets: web_437, web_1442, and web_10000.

When we create web_437, we give more chances to follow a
non-navigational link to balance the number of hyperlinks in each
class. For web_1442, we do not assign prior bias on the hyperlinks
when conducting the random walk while we apply some heuris-
tics to filter out the trivially removable navigation hyperlinks. On
web_10000, we do not apply any tricks to remove the navigation
hyperlinks. Thus, the distribution of the navigation, suggestion, and
action hyperlinks on this dataset may be close to the underlying
distribution of the hyperlinks in an entire web graph.

Three senior engineers in NAVER have manually labeled the
hyperlinks based on consistent criteria. The assigned labels are
cross checked. On the largest graph, web_10000, some labels are
mechanically assigned by exploiting the template of a web page.

3.2 Model Specification and Training
Given a directedweb graphG = (V, E) whereV = {p1,p2, · · · ,pn }

and E = {(pi ,pj ) : pi ∈ V,pj ∈ V}, each hyperlink belongs to one
of the three classes: navigation, suggestion, and action. If we consider
a web page to be an entity, a labeled directed edge from a page to an-
other can be thought of as a relation between the entities in a knowl-
edge graph. Let us define three different relation labels R = {n, s,a}
where n indicates navigation, s indicates suggestion, and a indicates
action. Assigning the relation labels to the hyperlinks leads to a set
of golden triplets S = {(pi , r ,pj ) : pi ∈ V, r ∈ R,pj ∈ V}. Then,
we can compute an embedding of each relation as well as a set of
embeddings for the web pages by minimizing the following loss
function.

L =
∑

(pi ,r ,pj )∈S
[f (pi , r ,pj ) + γ − f (c(pi , r ,pj))]+ (5)

where c(pi , r ,pj) is defined by

c(pi , r ,pj) =


prob. α/2 : (pi , r ,q),q ∈ V\{pj }, (pi , r ,q) /∈ S

prob. α/2 : (q, r ,pj ),q ∈ V\{pi }, (q, r ,pj ) /∈ S

prob. (1 − α ) : (pi , r ′,pj ), r ′ ∈ R\{r }
(6)

where α controls the chance to corrupt entities and 0 < α ≤ 1. Note
that if we set α = 1, we can make the above loss function identical
to that of the TransE, TransH, and TransR models by assigning
appropriate prior probability on corrupting pi or pj and using the
corresponding distance function f (pi , r ,pj ) discussed in Section 2.
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It is important to notice that S is a training set. For each golden
triplet (pi , r ,pj ) ∈ S, we generate a corrupted triplet c(pi , r ,pj)
by (6). Then, weminimize (5) by incorporating all the golden triplets
and the corrupted triplets, i.e., the embeddings are trained in a way
that the golden triplets are encouraged and the corrupted triplets
are discouraged. Once training is done, we predict relation labels for
a test set T = {(pi , r ,pj ) : pi ∈ V, r ∈ R,pj ∈ V, (pi , r ,pj ) /∈ S}.

The difference between (1) and (5) is how to generate the cor-
rupted triplets. As discussed in Section 2, the previously studied
knowledge graph embedding methods only corrupt the entities and
do not corrupt the relations. However, when we corrupt the entities,
there is a chance that the corrupted triplet is not a corrupted one
but just an unobserved one in the training set. For example, if we
corrupt a golden triplet (p1,n,p2) by randomly replacing the tail
of the golden triplet and make (p1,n,p3) which is considered to
be a corrupted triplet, there is a risk that (p1,n,p3) ∈ T whereas
(p1,n,p3) /∈ S. Therefore, using (p1,n,p3) as a negative triplet might
mislead the training. Indeed, in our hyperlink classification problem,
for the navigation relation, it is not desirable to corrupt the entities
to create negative triplets because it is likely that the corrupted
triplet exists in a test set T due to the fact that there are many
navigation hyperlinks in the dataset as discussed in Section 3.1.

On the other hand, if we corrupt a relation, it is guaranteed
that the corrupted triplet is not in a test set because each pair of
the entities has a unique relation. That is, if (p1,n,p2) is observed,
then (p1, s,p2) and (p1,a,p2) should not hold. Thus, it is safe to use
(p1, s,p2) or (p1,a,p2) as corrupted triplets. However, if we only
corrupt relations and do not corrupt entities to create the negative
triplets, we might have a overfitting problem and the model is not
sufficiently trained for an unobserved entity. Therefore, in (6), we
corrupt the entities with the probability α , and corrupt the relations
with the probability 1−α . When we corrupt the entities, we replace
either the head or the tail with the same probability. We observe
that this new corruption strategy plays a critical role in improving
the model performance for the hyperlink classification problem.

3.3 Prediction
After training, we get a set of feature vectors for the web pages,

denoted by {p1,p2, · · · ,pn } and a set of feature vectors for the
three relations, navigation, suggestion, and action. Let r denote a
feature vector representation of a relation r . These embeddings are
computed by minimizing (5).

In testing phase, for a directed edge (pi ,pj ) ∈ T , we predict the
relation r ∈ R for (pi ,pj ) by computing

r∗ = arдmin
r ∈R

f (pi , r ,pj ) (7)

where r∗ is the predicted relation. The distance function f (pi , r ,pj )
is differently defined depending on the TransE, TransH, and TransR
models as discussed in Section 2. For example, if we use TransH,

f (pi , r ,pj ) = ∥(pi −wr
Tpiwr ) + r − (p j −wr

Tp jwr )∥22 (8)

where wr is a trained relation-specific hyperplane. That is, we
represent the web pages (pi ,pj ) and the relations in the embedded
spaces, and then assign a relation to (pi ,pj ) by taking the relation
that yields the smallest distance.

Table 2: The average F1 scores (%) of ourmodelwith different
α values and the original TransE, TransH, and TransR.

TransE TransH TransR

web_437

Our model, α = 0.3 34.29 60.25 57.99
Our model, α = 0.5 34.39 58.87 57.32
Our model, α = 0.7 33.88 58.91 59.83
The original model 36.22 54.04 53.22

web_1442

Our model, α = 0.3 23.39 53.42 50.04
Our model, α = 0.5 24.86 55.16 46.18
Our model, α = 0.7 21.18 52.70 45.12
The original model 20.05 29.94 10.35

web_10000

Our model, α = 0.3 20.68 76.00 53.86
Our model, α = 0.5 17.98 74.64 46.99
Our model, α = 0.7 19.50 72.94 44.11
The original model 15.31 25.35 2.08

Table 3: F1 score (%) of each class and the average F1 score.
Our model achieves the highest F1 scores.

navigation suggestion action Average

web_437

Random-predict 59.75 25.81 11.07 32.21
Rule-based 60.20 20.96 0.00 27.05

TransE-original 55.78 31.96 20.93 36.22
TransH-original 70.80 52.75 38.56 54.04
TransR-original 67.87 52.86 38.94 53.22

Our Model 77.04 57.05 46.64 60.25

web_1442

Random-predict 89.13 5.18 5.65 33.32
Rule-based 72.98 10.20 36.67 39.95

TransE-original 42.54 8.57 9.05 20.05
TransH-original 54.80 13.57 21.45 29.94
TransR-original 0.00 12.97 18.09 10.35

Our Model 93.48 22.88 49.12 55.16

web_10000

Random-predict 98.91 1.60 0.00 33.50
Rule-based 68.81 1.74 9.92 26.82

TransE-original 43.25 2.06 0.61 15.31
TransH-original 63.01 12.02 1.03 25.35
TransR-original 0.00 5.61 0.61 2.08

Our Model 99.66 83.22 45.12 76.00

4 EXPERIMENTAL RESULTS
We test the performance of ourmodel and the original knowledge

graph embedding methods3 on the datasets discussed in Section 3.1.
We compute the average F1 score by averaging the F1 score of
each class. Table 2 shows the average F1 scores of our model with
different α values and the performance of the original TransE,
TransH, and TransR. We first observe that TransH tends to show
better performance than TransE and TransR. More importantly,
our model significantly outperforms the original knowledge graph
embedding methods. The strategy of creating corrupted triplets
plays a critical role in the hyperlink classification problem, and
our strategy is effective enough to boost the performance of the
original knowledge graph embedding methods.

Table 3 and Figure 1 show the F1 score of each class, and the aver-
age F1, precision, and recall scores. ‘Random-predict’ indicates the
performance of random prediction while preserving the number of

3For the original knowledge graph embedding models, we use the codes from
https://github.com/thunlp/KB2E. We conduct 5-fold cross validation.
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(a) web_437 (b) web_1442 (c) web_10000

Figure 1: The average F1, average precision, and average recall on the threeweb graphs. Ourmodel shows the best performance.

Table 4: Performance on the original web graphs and the randomly shuffled graphs where the relation labels are randomly
assigned. The real-world web graphs have characterized structures in terms of forming each relation type.

navigation suggestion action
F1 (%) Pre. (%) Rec. (%) F1 (%) Pre. (%) Rec. (%) F1 (%) Pre. (%) Rec. (%)

web_437
Original Graph 77.04 78.82 75.37 57.05 50.43 65.77 46.64 62.00 37.43

Randomly Shuffled Graph 58.60 60.51 56.88 25.36 24.39 26.59 13.79 13.26 14.42

web_1442
Original Graph 93.48 92.22 94.78 22.88 30.66 18.28 49.12 48.52 49.74

Randomly Shuffled Graph 86.08 88.94 83.41 6.19 5.28 7.53 5.68 4.58 7.52

web_10000
Original Graph 99.66 99.82 99.50 83.22 77.84 89.41 45.12 34.91 63.77

Randomly Shuffled Graph 98.43 98.94 97.92 1.28 0.99 1.83 0.61 0.38 1.45

hyperlinks in each class. We also compare with a rule-based predic-
tion (denoted by ‘Rule-based’) where we consider within-domain
hyperlinks to be navigational links, the hyperlinks associated with
an anchor text containing ‘edit’, ‘share’, ‘email’, or ‘vote’ to be ac-
tion links, and the rest to be suggestion links. For ‘Our Model’, we
use the result of TransH with α = 0.3, α = 0.5, and α = 0.3 for
web_437, web_1442, and web_10000, respectively. We see that our
model achieves the best performance in terms of all the metrics.

To analyze why our approach works well for the hyperlink clas-
sification problem, we generate randomly shuffled graphs where
the relation labels are randomly shuffled while preserving the num-
ber of hyperlinks in each relation. Table 4 shows the results of our
model on the original graphs and the randomly shuffled graphs. We
see that the classification performance significantly degrades on the
randomly shuffled graphs. This shows that a web graph preserves
a characterized structure with respect to the three different types
of hyperlinks, which enables us to predict the relation labels via
structured graph embedding.

5 CONCLUSIONS & FUTUREWORK
By introducing effective strategies for creating a set of corrupted

triplets to a knowledge graph embedding method, we are able to
successfully classify hyperlinks on web graphs. We plan to extend
our analysis to a case where we can incorporate various features or
attributes of web pages or the hyperlinks [2], and exploit clustering
structure of a web graph [16].
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